
Patterns and Practices for
Embedded TDD in C and C++

How we introduced TDD into our company

Work for based in

Cornwall, England.

Provide an embedded software

development service.

Introduced Lean/Agile practices

in 2009 and have delivered

approximately 30 projects

since then.

Practices and Patterns we use.

Map data ©Google 2015

Write a
failing
test

Make the
smallest
change
to pass
the test

Refactor
to

improve
the code

Run all the tests
and see the new
one fail

Run all the tests and see them all pass

Run all the tests and
see them all pass

F
I
R
S
T

Fast
Isolated
Repeatable
Self Verifying
Timely

Standard TDD Cycle

Agile in a Flash : http://agileinaflash.blogspot.de/2009/02/first.html

http://agileinaflash.blogspot.de/2009/02/first.html

How we achieve FIRST (Contents)

• Where we run our tests to keep them fast

• How TDD Style affects the verification of our tests

• The different methods we use for inserting test doubles to keep our
tests isolated and repeatable

• Other practices

Where to run the tests?

Fast
Isolated

Repeatable
Self Verifying

Timely

Test on Target

Fast
Isolated

Repeatable
Self Verifying

Timely

Analysis of TDD Cycle with Test on Target

Build Deploy Run Tests & receive results

5 seconds 30 seconds 30 seconds

Write a failing
test

Write code to
make tests pass

Refactor

1 minute 1 minute 5 seconds 1 minute 1 minute 5 seconds 1 minute 1 minute 5 seconds

Build, Deploy &
Run Tests

Build, Deploy &
Run Tests

Build, Deploy &
Run Tests

4th Generation Core i7
8GB RAM
SSD

Microchip C32 Compiler
PIC32MX575F512H
MPLAB 8
RealICE

Fast
Isolated

Repeatable
Self Verifying

Timely

Test on Target

Advantages

• Accurate test results

Disadvantages
• Slower feedback

• Programming the target device can be slow
• The target device is often not fast when compared to modern

PCs so the tests will run more slowly
• Transferring the test results back to the development platform

can be slow depending on the method used
• This will slow down your development process
• Make you run test less often, leading to bigger changes and

more mistakes and missed execution paths

• Limited code space and RAM
• The tests and the test framework are going to be at least the

size of your code if not larger.

• You need target hardware to run the tests
• Limited hardware – not enough for every development pair
• Often expensive
• Sometimes broken

We no longer exclusively run tests on the target

Fast
Isolated

Repeatable
Self Verifying

Timely

Test on Development Platform

Fast
Isolated

Repeatable
Self Verifying

Timely

Analysis of TDD Cycle with Test on
Development Platform

Write a failing
test

Build
Run
Tests

Write code to
make tests pass

Refactor

1 minute 10 seconds 1 minute 10 seconds 1 minute

5 seconds 5 seconds

10 seconds

Build
& Run
Tests

Build
& Run
Tests

Build
& Run
Tests

4th Generation Core i7
8GB RAM
SSD

Visual Studio 2008

Fast
Isolated

Repeatable
Self Verifying

Timely

Test on Development Platform

Advantages

• Fast feedback

• No code space and/or RAM
issues

• Reduced the need for target
hardware

• More portable code

• Able to write code (in the tests)
that may not compile when
using the compiler for the target

Disadvantages

• Development platform and
target platform are different.
Some issues will only happen on
the target.
• E.g. differences in packing,

endianness and sizeof(int).

• Able to write code that may not
compile when using the
compiler for the target

Fast
Isolated

Repeatable
Self Verifying

Timely

Dual Targeting Tests

Fast
Isolated

Repeatable
Self Verifying

Timely

Write a
failing
test

Make the
smallest
change
to pass
the test

Refactor
to

improve
the code

Run all the tests
and see the new

one fail

Run all the tests and see them all pass

Run all the tests and
see them all pass

Compile
using the

Target
Compiler

Deploy
and Run
Tests on
Target

Every 15 minutes or when the
feature is complete

Dual Targeting TDD Cycle

Fast
Isolated

Repeatable
Self Verifying

Timely

Dual Targeting

Advantages

• Fast feedback

• More portable code

• Compiling on two different
compilers increases the chances
of catching issues

• Able to run dynamic code
analysis (e.g. Memory leak
detection & Sanitizers)

Disadvantages

• You need target hardware to run
the tests

• You are limited to language
features implemented by both
compilers

• Maintaining two builds
• This can be minimised if you can

use the same build system and just
switch the compiler and linker

Fast
Isolated

Repeatable
Self Verifying

Timely

Splitting and testing the solution

Fast
Isolated

Repeatable
Self Verifying

Timely

A good architecture will make TDD easier

We use a simple layered approach
• Low Coupling

• Stick to SOLID principles(1)

• Single Responsibility Principle

• Dependency Inversion Principle

Faster to Test

Slower to Test

Application code
(Hardware independent)

Hardware Aware Code

BSP (Device Drivers)

HAL (Processor Drivers)
We have a thin outer (low level) layer that isn’t
unit tested. This only sets processor registers.
(We keep its cyclomatic complexity ≤ 2)

1. Agile software development: Principles, Patterns, and Practices – Martin

Fast
Isolated

Repeatable
Self Verifying

Timely

Running your tests
in isolation
To test in isolation your test
cannot depend on hardware or
something out of your control.

What am I going to replace the
dependency with?

Test Double

How am I going to replace the
dependency?

Fast
Isolated

Repeatable
Self Verifying

Timely

«interface»

I2C

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

RaspberryPiI2C

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

BMA150Accelerometer

- i2c: I2C

+ BMA150Accelerometer(I2C*)

+ ReadAcceleration(): Raw3DSensorData

Test Doubles

Stub – Provide fixed responses to method calls and can record the
values they are passed.

Dummy – Used to fulfil a dependency that is not used, they usually
consist of empty method definitions.

Fake – Provide a working fake implementation of the dependency.
E.g. an in-memory EEPROM

Mock – Pre-programmed with expected method calls and verifies
that they happen.

Martin Fowler. Mocks aren’t Stubs. http://martinfowler.com/articles/mocksArentStubs.html

Classical
TDD

Mockist
TDD

Fast
Isolated

Repeatable
Self Verifying

Timely

http://martinfowler.com/articles/mocksArentStubs.html

TDD Style

I want to fulfil an Order object from a
RemovableInventory that is
implemented by a Warehouse object

Example Scenario

Given our warehouse has 50 Apples in
stock

And an order for 20 Apples

When the order is fulfilled

Then our warehouse has 30 Apples in stock

Martin Fowler. Mocks aren’t Stubs. http://martinfowler.com/articles/mocksArentStubs.html

Order

+ Fil l(RemovableInventory)

«interface»

Remov ableInv entory

+ HasInventory(int, string): bool

+ RemoveInventory(int, string): void

Warehouse

+ AddInventory(int, string): void

+ HasInventory(int, string): bool

+ HowManyInStock(string): int

+ RemoveInventory(int, string): void

Fast
Isolated

Repeatable
Self Verifying

Timely

http://martinfowler.com/articles/mocksArentStubs.html

Classical (Chicago/Detroit) Style
State Verification (with Stubs)
class RemovableInventoryStub : public RemovableInventory {
public:

int removeNumberOf;
std::string removeItem;

RemovableInventoryStub() : removeNumberOf(0), removeItem("") { }

virtual bool HasInventory(int numberOf, const std::string &item) const {
return true;

}

virtual void RemoveInventory(int numberOf, const std::string &item) {
removeNumberOf = numberOf;
removeItem = item;

}
};

TEST(Order_ClassicalUsingStub, Fulfilling_an_order_removes_the_items_from_the_inventory)
{

RemovableInventoryStub inventory;

Order target(20, "Apples");
target.Fill(inventory);

EXPECT_EQ(20, inventory.removeNumberOf);
EXPECT_EQ("Apples", inventory.removeItem);

}

Martin Fowler. Mocks aren’t Stubs. http://martinfowler.com/articles/mocksArentStubs.html

Fast
Isolated

Repeatable
Self Verifying

Timely

http://martinfowler.com/articles/mocksArentStubs.html

Classical (Chicago/Detroit) Style
State Verification (using the real object)
TEST(Order_ClassicalUsingReal, Filling_an_order_removes_the_items_from_the_inventory)
{

Warehouse inventory;
inventory.AddInventory(50, "Apples");

Order target(20, "Apples");
target.Fill(inventory);

EXPECT_EQ(30, inventory.HowManyInStock("Apples"));
}

Martin Fowler. Mocks aren’t Stubs. http://martinfowler.com/articles/mocksArentStubs.html

Fast
Isolated

Repeatable
Self Verifying

Timely

http://martinfowler.com/articles/mocksArentStubs.html

Mockist (London) Style
Behaviour Verification
class RemovableInventoryMock : public RemovableInventory
{
public:

MOCK_CONST_METHOD2(HasInventory, bool(int numberOf, const std::string &item));
MOCK_METHOD2(RemoveInventory, void(int numberOf, const std::string &item));

};

TEST(Order_Mockist, Fulfilling_an_order_removes_the_items_from_the_inventory)
{

RemovableInventoryMock inventory;

EXPECT_CALL(inventory, HasInventory(20, "Apples"))
.Times(1)
.WillOnce(Return(true));

EXPECT_CALL(inventory, RemoveInventory(20, "Apples"))
.Times(1);

Order target(20, "Apples");
target.Fill(inventory);

}

Martin Fowler. Mocks aren’t Stubs. http://martinfowler.com/articles/mocksArentStubs.html

Fast
Isolated

Repeatable
Self Verifying

Timely

http://martinfowler.com/articles/mocksArentStubs.html

TDD Style

Classical
Advantages

• Does not specify how the code
should work

• Easier to refactor the code

Disadvantages
• Harder to work out what is broken, a

single incorrect code change can
break many tests

• Can be a trade off between
encapsulation and testability. The
state might have to be more visible
so it can be verified

Mockist

Advantages
• Code changes that break functionality

tend to only break the tests that
directly relate to them

Advantages/Disadvantages
• You have to think about the

implementation when writing tests

Disadvantages
• Tests are coupled to implementation

making refactoring harder

Fast
Isolated

Repeatable
Self Verifying

Timely

How I vary my TDD Style

Application code
(Hardware independent)

Hardware Aware Code

BSP (Device Drivers)

HAL (Processor Drivers)

Mockist Testing – Behaviour Verification (Mocks)

The behaviour is usually fixed by the device so using mocks and
specifying the behaviour in the tests feels more natural.

I prefer classical testing, because my tests are not coupled to my
implementation this allows me to refactor more easily.

Classical Testing – State Verification (Stubs/Fakes/Dummies)

Fast
Isolated

Repeatable
Self Verifying

Timely

Running your tests
in isolation
To test in isolation your test
cannot depend on hardware or
something out of your control.

What am I going to replace the
dependency with?

Test Double

How am I going to replace the
dependency?

Fast
Isolated

Repeatable
Self Verifying

Timely

«interface»

I2C

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

RaspberryPiI2C

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

BMA150Accelerometer

- i2c: I2C

+ BMA150Accelerometer(I2C*)

+ ReadAcceleration(): Raw3DSensorData

Where you can insert Test Doubles

Compile time

• Macros (C/C++)
• Templates (C++)
• #includes

(C/C++)

Link time

• Linking other
object files
(C/C++)

• Weak linking
functions (C)

Run time

• Interface (C++)
• Inheritance

(C++)
• V-Table (C)

These are the three most common insertion techniques we use

Fast
Isolated

Repeatable
Self Verifying

Timely

Test Double Insertion

I²C

Fast
Isolated

Repeatable
Self Verifying

Timely

Test Doubles Insertion

ApplicationBSP LibraryTests

«interface»

I2C

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

MockI2C

+ ExpectRead(void*, int, bool): void

+ ExpectSetAddress(unsigned char, bool): void

+ ExpectWrite(void*, int, bool): void

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

RaspberryPiI2C

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

BMA150Accelerometer

- i2c: I2C

+ BMA150Accelerometer(I2C*)

+ ReadAcceleration(): Raw3DSensorData

BMA150AccelerometerTests Application

Fast
Isolated

Repeatable
Self Verifying

Timely

C++ Interfaces
We use this technique for everything

Fast
Isolated

Repeatable
Self Verifying

Timely

Dependency Interface
Test Doubles insertion using C++ Interfaces

class I2C
{
public:
virtual ~I2C() { }
virtual bool SetAddress(unsigned char

address) = 0;

virtual bool Read(void * buffer,
int length) = 0;

virtual bool Write(const void * buffer,
int length) = 0;

};

BSP LibraryTests

«interface»

I2C

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

MockI2C

+ ExpectRead(void*, int, bool): void

+ ExpectSetAddress(unsigned char, bool): void

+ ExpectWrite(void*, int, bool): void

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

BMA150Accelerometer

- i2c: I2C

+ BMA150Accelerometer(I2C*)

+ ReadAcceleration(): Raw3DSensorData

BMA150AccelerometerTests

Fast
Isolated

Repeatable
Self Verifying

Timely

Dependency Mock
Test Doubles insertion using C++ Interfaces

class MockI2C : public I2C
{
public:
virtual bool SetAddress(unsigned char address);
virtual bool Read(void * buffer, int length);
virtual bool Write(const void * buffer,

int length);

void ExpectSetAddress(unsigned char address,
bool returnValue);

void ExpectRead(const void * buffer, int length,
bool returnValue);

void ExpectWrite(const void * buffer, int length,
bool returnValue);

void Verify();
virtual ~MockI2C() { Verify(); }

};

BSP LibraryTests

«interface»

I2C

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

MockI2C

+ ExpectRead(void*, int, bool): void

+ ExpectSetAddress(unsigned char, bool): void

+ ExpectWrite(void*, int, bool): void

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

BMA150Accelerometer

- i2c: I2C

+ BMA150Accelerometer(I2C*)

+ ReadAcceleration(): Raw3DSensorData

BMA150AccelerometerTests

Fast
Isolated

Repeatable
Self Verifying

Timely

Test
Test Doubles insertion using C++ Interfaces

void testBMA150Accelerometer_Reading_an_acceleration_of_0()
{
// Given
MockI2C i2c;

const unsigned char readCommand[] = { 0x02 };
const unsigned char readData[] =
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };

i2c.ExpectSetAddress(deviceAddress, true);
i2c.ExpectWrite(readCommand, sizeof(readCommand), true);
i2c.ExpectRead(readData, sizeof(readData), true);

// When
BMA150Accelerometer target(&i2c);
Raw3DSensorData result = target.ReadAcceleration();

// Then
TEST_ASSERT_EQUAL(0, result.x);
TEST_ASSERT_EQUAL(0, result.y);
TEST_ASSERT_EQUAL(0, result.z);

}

BSP LibraryTests

«interface»

I2C

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

MockI2C

+ ExpectRead(void*, int, bool): void

+ ExpectSetAddress(unsigned char, bool): void

+ ExpectWrite(void*, int, bool): void

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

BMA150Accelerometer

- i2c: I2C

+ BMA150Accelerometer(I2C*)

+ ReadAcceleration(): Raw3DSensorData

BMA150AccelerometerTests

Fast
Isolated

Repeatable
Self Verifying

Timely

Code (System under test)
Test Doubles insertion using C++ Interfaces

class BMA150Accelerometer
{
private:
I2C *i2c;

public:
explicit BMA150Accelerometer(I2C *i2cPort)
: i2c(i2cPort)

{ }

Raw3DSensorData ReadAcceleration() const;
{
const unsigned char BMA150Address = 0x38;
i2c->SetAddress(BMA150Address);

const unsigned char registerAddress[] = { 0x02 };
i2c->Write(registerAddress, sizeof(registerAddress));

Raw3DSensorData rawAcceleration;
i2c->Read(&rawAcceleration, sizeof(rawAcceleration));

return rawAcceleration;
}

};

BSP LibraryTests

«interface»

I2C

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

MockI2C

+ ExpectRead(void*, int, bool): void

+ ExpectSetAddress(unsigned char, bool): void

+ ExpectWrite(void*, int, bool): void

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

BMA150Accelerometer

- i2c: I2C

+ BMA150Accelerometer(I2C*)

+ ReadAcceleration(): Raw3DSensorData

BMA150AccelerometerTests

Fast
Isolated

Repeatable
Self Verifying

Timely

Test Doubles insertion using C++ Interfaces

Advantages
• Easiest method of inserting Test Doubles

Disadvantages
• Virtual function calls are slower than directly calling a method

• The V Table will take up space (either RAM or ROM)

We use this technique for everything

Fast
Isolated

Repeatable
Self Verifying

Timely

C V-Tables (structs containing
function pointers)
We use this technique when we can’t use C++

Fast
Isolated

Repeatable
Self Verifying

Timely

Dependency Interface
Test Doubles insertion using C V-Tables (structs containing function pointers)

#ifndef I2C_H
#define I2C_H

#include <stdbool.h>

struct I2C
{
bool (*SetAddress)(unsigned char address);
bool (*Read)(void * buffer, int length);
bool (*Write)(const void * buffer, int length);

};

#endif

BSP LibraryTests

«interface»

I2C

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

MockI2C

+ ExpectRead(void*, int, bool): void

+ ExpectSetAddress(unsigned char, bool): void

+ ExpectWrite(void*, int, bool): void

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

BMA150Accelerometer

- i2c: I2C

+ BMA150Accelerometer(I2C*)

+ ReadAcceleration(): Raw3DSensorData

BMA150AccelerometerTests

Fast
Isolated

Repeatable
Self Verifying

Timely

Dependency Mock
Test Doubles insertion using C V-Tables (structs containing function pointers)

static bool MockI2C_SetAddress(
unsigned char address)

{
// ...

}

const struct I2C MockI2C =
{
.SetAddress = MockI2C_SetAddress,
.Read = MockI2C_Read,
.Write = MockI2C_Write

};

void MockI2C_ExpectSetAddress(
unsigned char address, bool returnValue)

{
// ...

}

void MockI2C_Verify (void)
{
// ...

}

BSP LibraryTests

«interface»

I2C

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

MockI2C

+ ExpectRead(void*, int, bool): void

+ ExpectSetAddress(unsigned char, bool): void

+ ExpectWrite(void*, int, bool): void

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

BMA150Accelerometer

- i2c: I2C

+ BMA150Accelerometer(I2C*)

+ ReadAcceleration(): Raw3DSensorData

BMA150AccelerometerTests

Fast
Isolated

Repeatable
Self Verifying

Timely

Test
Test Doubles insertion using C V-Tables (structs containing function pointers)

void testBMA150Accelerometer_Reading_an_acceleration_of_0(void)
{
// Given
const unsigned char readCommand[] = { 0x02 };
const unsigned char readData[] =

{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };

MockI2C_ExpectSetAddress(deviceAddress, true);
MockI2C_ExpectWrite(readCommand, sizeof(readCommand), true);
MockI2C_ExpectRead(readData, sizeof(readData), true);

// When
BMA150Accelerometer_Initialise(&MockI2C);
struct Raw3DSensorData result =

BMA150Accelerometer_ReadAcceleration();

// Then
MockI2C_Verify();
TEST_ASSERT_EQUAL(0, result.x);
TEST_ASSERT_EQUAL(0, result.y);
TEST_ASSERT_EQUAL(0, result.z);

}

BSP LibraryTests

«interface»

I2C

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

MockI2C

+ ExpectRead(void*, int, bool): void

+ ExpectSetAddress(unsigned char, bool): void

+ ExpectWrite(void*, int, bool): void

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

BMA150Accelerometer

- i2c: I2C

+ BMA150Accelerometer(I2C*)

+ ReadAcceleration(): Raw3DSensorData

BMA150AccelerometerTests

Fast
Isolated

Repeatable
Self Verifying

Timely

Code (System under test)
Test Doubles insertion using C V-Tables (structs containing function pointers)

static const struct I2C *i2c;
void BMA150Accelerometer_Initialise(const struct I2C *i2cPort)
{
i2c = i2cPort;

}

struct Raw3DSensorData
BMA150Accelerometer_ReadAcceleration(void)

{
const unsigned char BMA150Address = 0x38;
i2c->SetAddress(BMA150Address);

const unsigned char registerAddress[] = { 0x02 };
i2c->Write(registerAddress, sizeof(registerAddress));

struct Raw3DSensorData rawAcceleration;
i2c->Read(&rawAcceleration, sizeof(rawAcceleration));

return rawAcceleration;
}

BSP LibraryTests

«interface»

I2C

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

MockI2C

+ ExpectRead(void*, int, bool): void

+ ExpectSetAddress(unsigned char, bool): void

+ ExpectWrite(void*, int, bool): void

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

BMA150Accelerometer

- i2c: I2C

+ BMA150Accelerometer(I2C*)

+ ReadAcceleration(): Raw3DSensorData

BMA150AccelerometerTests

Fast
Isolated

Repeatable
Self Verifying

Timely

Test Doubles insertion using C V-Tables
(structs containing function pointers)
Advantages

• Allows runtime substitution in C

Disadvantages
• It is easy to make mistakes when creating the V-Tables

• Allowing multiple instances requires a lot of boilerplate code than was not
shown in the previous slides

We use this technique when we can’t use C++

Fast
Isolated

Repeatable
Self Verifying

Timely

Linking other object files
We use it as a last resort when virtual function calls are too expensive

The example code is in C but this technique works in C++ as well

Fast
Isolated

Repeatable
Self Verifying

Timely

Dependency Interface
Test Doubles insertion by linking other object files

#ifndef I2C_H
#define I2C_H

#include <stdbool.h>

bool I2C_SetAddress(unsigned char address);
bool I2C_Read(void * buffer, int length);
bool I2C_Write(const void * buffer,

int length);

#endif

BSP LibraryTests

«interface»

I2C

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

MockI2C

+ ExpectRead(void*, int, bool): void

+ ExpectSetAddress(unsigned char, bool): void

+ ExpectWrite(void*, int, bool): void

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

BMA150Accelerometer

- i2c: I2C

+ BMA150Accelerometer(I2C*)

+ ReadAcceleration(): Raw3DSensorData

BMA150AccelerometerTests

Fast
Isolated

Repeatable
Self Verifying

Timely

Test Doubles insertion by linking other
object files

BMA150.
o

BMA150
Tests.o

Tests.
out

MockI2C.
o

Pi_I2C.
o

App.
out

App.o

Contain different
definitions of the

same methods

Fast
Isolated

Repeatable
Self Verifying

Timely

Makefile
Test Doubles insertion by linking other object files

tests
#------
tests : DriversTests/BMA150AccelerometerTests.o MockHAL/MockI2C.o Drivers/BMA150Accelerometer.o

$(CC) $(CFLAGS) $^ -o $@

application
#------------
application : Application/main.o RaspberryPiHAL/RaspberryPiI2C.o Drivers/BMA150Accelerometer.o

$(CC) $(CFLAGS) $^ -o $@

ApplicationBSP LibraryTests

«interface»

I2C

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

MockI2C

+ ExpectRead(void*, int, bool): void

+ ExpectSetAddress(unsigned char, bool): void

+ ExpectWrite(void*, int, bool): void

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

RaspberryPiI2C

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

BMA150Accelerometer

- i2c: I2C

+ BMA150Accelerometer(I2C*)

+ ReadAcceleration(): Raw3DSensorData

BMA150AccelerometerTests Application

Fast
Isolated

Repeatable
Self Verifying

Timely

Dependency Mock
Test Doubles insertion by linking other object files

bool I2C_SetAddress(unsigned char address)
{
// ...

}

void MockI2C_ExpectSetAddress(unsigned char address,
bool returnValue)

{
// ...

}

void MockI2C_Verify(void)
{
// ...

}

BSP LibraryTests

«interface»

I2C

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

MockI2C

+ ExpectRead(void*, int, bool): void

+ ExpectSetAddress(unsigned char, bool): void

+ ExpectWrite(void*, int, bool): void

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

BMA150Accelerometer

- i2c: I2C

+ BMA150Accelerometer(I2C*)

+ ReadAcceleration(): Raw3DSensorData

BMA150AccelerometerTests

Fast
Isolated

Repeatable
Self Verifying

Timely

Test
Test Doubles insertion by linking other object files

void testBMA150Accelerometer_Reading_an_acceleration_of_0(void)
{
// Given
const unsigned char readCommand[] = { 0x02 };
const unsigned char readData[] =

{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };

MockI2C_ExpectSetAddress(deviceAddress, true);
MockI2C_ExpectWrite(readCommand,

sizeof(readCommand), true);
MockI2C_ExpectRead(readData,

sizeof(readData), true);

// When
struct Raw3DSensorData result =

BMA150Accelerometer_ReadAcceleration();

// Then
MockI2C_Verify();
TEST_ASSERT_EQUAL(0, result.x);
TEST_ASSERT_EQUAL(0, result.y);
TEST_ASSERT_EQUAL(0, result.z);

}

BSP LibraryTests

«interface»

I2C

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

MockI2C

+ ExpectRead(void*, int, bool): void

+ ExpectSetAddress(unsigned char, bool): void

+ ExpectWrite(void*, int, bool): void

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

BMA150Accelerometer

- i2c: I2C

+ BMA150Accelerometer(I2C*)

+ ReadAcceleration(): Raw3DSensorData

BMA150AccelerometerTests

Fast
Isolated

Repeatable
Self Verifying

Timely

Code (System under test)
Test Doubles insertion by linking other object files

struct Raw3DSensorData
BMA150Accelerometer_ReadAcceleration(void)

{
const unsigned char BMA150Address = 0x38;
I2C_SetAddress(BMA150Address);

const unsigned char registerAddress[] =
{ 0x02 };

I2C_Write(registerAddress,
sizeof(registerAddress));

struct Raw3DSensorData rawAcceleration;
I2C_Read(&rawAcceleration, sizeof(rawAcceleration));

return rawAcceleration;
}

BSP LibraryTests

«interface»

I2C

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

MockI2C

+ ExpectRead(void*, int, bool): void

+ ExpectSetAddress(unsigned char, bool): void

+ ExpectWrite(void*, int, bool): void

+ Read(void*, int): bool

+ SetAddress(unsigned char)

+ Write(void*, int): bool

BMA150Accelerometer

- i2c: I2C

+ BMA150Accelerometer(I2C*)

+ ReadAcceleration(): Raw3DSensorData

BMA150AccelerometerTests

Fast
Isolated

Repeatable
Self Verifying

Timely

Test Doubles insertion by linking other
object files
Advantages

• No virtual function calls

Disadvantages
• Adds complexity to the build system

We use this technique
• As a last resort when virtual function calls are too expensive. We profile the

calls first to see what is causing the problem

Fast
Isolated

Repeatable
Self Verifying

Timely

Test Double Insertion Techniques
When we use them
C++ Interfaces – For everything

• Easiest method of inserting test doubles

C V-Tables (structs of function pointers) – When we can not use C++
• Run time substitution in C

Linking other object files – When virtual function calls are too
expensive

• Removes the performance hit from making virtual function calls

Fast
Isolated

Repeatable
Self Verifying

Timely

What else?

Other practices

• When hardware is in short
supply we use our Continuous
Integration server to run tests on
the target platform

• Integration Tests that check
hardware interaction

• Polymorphic System Testing

Other practices

• When hardware is in short
supply we use our Continuous
Integration server to run tests on
the target platform

• Integration Tests that check
hardware interaction

• Polymorphic System Testing

Polymorphic System Testing

Problem:
Some system tests take a long time to run, in the order of hours per test, even
when they are automated.

This slows down our outer feedback loops.

Fast feedback from long System Tests

≈5 seconds

Pair programming

<5 minute

Unit Tests

≈½ hour

Integration Tests

≈½ day

Code Review

≈2 days

System Tests

≈1 week

Regression Tests

Code

Feedback loops

Fast feedback from long System Tests

Automated System Test Overview

System Tests

System Test

Support

Framework

Step Routing

Gherkin features,

scenarios and step

handlers

Allows us to interact with

the hardware easily

Routes calls from the step

handlers to the

appropriate piece of

hardware

«use»

«use»

Scenario: The EDI stack turns on when water
starts flowing

Given there is no water flowing
When the water flow rate changes to 2000ml/minute
Then the EDI Stack is on

[Given(@"there is no water flowing")]
public void ThereIsNoWaterFlowing()
{

Target.Instance.FlowRate = 0;
Target.Instance.ElapseTimeMs(500);

}

Fast feedback from long System Tests

Automated System Test Overview

System Tests

System Test

Support

Framework

Step Routing

Gherkin features,

scenarios and step

handlers

Allows us to interact with

the hardware easily

Routes calls from the step

handlers to the

appropriate piece of

hardware

«use»

«use»

public partial class Target
{

private PWMCommand _pwm;
private static TargetDevice _instance = null;

public static TargetDevice Instance {
get {

if (_instance == null)
_instance = new Target();

return _instance;
}

}
public int FlowRate {

set {
if(!_pwm.SetFrequencyInHz(value)) {

Assert.Fail("Hardware Error: " +
"Unable to set flow rate");

}
}

}
}

Fast feedback from long System Tests

Automated System Test Overview

System Tests

System Test

Support

Framework

Step Routing

Gherkin features,

scenarios and step

handlers

Allows us to interact with

the hardware easily

Routes calls from the step

handlers to the

appropriate piece of

hardware

«use»

«use»

Fast feedback from long System Tests

Polymorphic System Test Overview

System Tests

Step Routing

Interface

System Test

Support

Framework

Hardware Routing Software Routing

Target Software

«use»

«use»

«use»

«use»

«use»

class Target
{
private static TargetDevice _instance = null;

public static TargetDevice Instance
{
get {
if (_instance == null) {
#if CODETARGET
_instance = new CodeTargetDevice();

#else
_instance = new HardwareTargetDevice();

#endif
}
return _instance;

}
}

}

Fast feedback from long System Tests

Polymorphic System Test – Software Routing

System Tests

Step Routing

Interface

System Test

Support

Framework

Hardware Routing Software Routing

Target Software

«use»

«use»

«use»

«use»

«use»

Application code
(Hardware independent)

Hardware Aware Code

BSP (Device Drivers)

HAL (Processor Drivers)

Fake BSP

Fast feedback from long System Tests

Polymorphic System Test
Reduced feedback time

Testing against Hardware
≈ 2 hours

Testing against Software
≈ 5 seconds

As we’re not testing the entire system we only use this to determine
if we’ve broken anything, not if the system is working

Fast feedback from long System Tests

Summary

• How we keep tests running fast by dual targeting

• How we use different TDD Style and how this effects how the
verification of our tests

• Different Test Double insertion techniques to keep our tests isolated
and repeatable

• Other practices we use in our testing process

;

Company : http://www.bluefruit.co.uk

Code : https://bitbucket.org/hiddeninplainsight

Blog : https://hiddeninplainsight.co.uk

http://www.bluefruit.co.uk/
https://bitbucket.org/hiddeninplainsight
https://hiddeninplainsight.co.uk/

