
Business Connect 2017

Byran Wills-Heath

Head of Development
Bluefruit Software

TDD driving Quality
(Software Development Process)



• Bluefruit established in 2000

• Embedded Software Specialists

• Clients in Automotive, Aerospace,
Scientific Instruments, Consumer Goods etc.

• Strong Quality focus

• Agile since 2009

• Influenced by Lean-Agile

Business Connect 2017



Products we’ve worked on



Business Connect 2017

• What quality means to us

• Why we believe it is important

• How we use TDD to improve quality



What Quality means to us



What Quality means to us

Never goes 
wrong

It just 
WORKS!

Great build 
quality

Exactly 
what I was 
looking for

Simple, yet 
effective

You almost 
forget its 

there!
Upgrades 

are 
seamless

Really adds 
to the 

experience

Stunning to 
look at

Never 
ceases to 

impress me

Completely 
intuitiveFeels like 

part of your 
body Makes the 

job so much 
easier

Well 
architected

Works first 
time, every 

time
I wish I had 
thought of 

it!

It has saved 
us a fortune

A real 
timesaver

Really helps 
to complete 

the task



What it 
delivers

How it 
“feels”

How it is 
built

What Quality means to us



User 
Experience

How it is 
built

We call what the user experiences 
‘Perceived Integrity’*. 

The way it is built is called
‘Conceptual Integrity’*.

*Mary Poppendeick’s ‘Lean Software
Development: An Agile Toolkit’

We believe these two 
concepts are what makes up 
and define the true meaning 

of quality in software.

What Quality means to us



What - Perceived Integrity

User 
Experience

How it is 
built

Usable

Economical

Reliable

Functional

Pleasurable

Meaningful



What - Conceptual Integrity

User 
Experience

How it is 
built

Conceptual Integrity includes the elements 
that are going on beneath the User 

Experience, but also include things that the 
end user will never see or engage with.

Scalability Maintainability

Habitability



What – Cultivating Quality



Why is Quality Important?

• Our vision:
• Happy Customers
• Happy Workforce
• Successful Projects

• Quality is a strategy, not a tactic



Why is Quality Important?

Scalability Maintainability

Habitability



Why is Quality Important?

“Always code as if the person who ends up 
maintaining your code will be a violent 
psychopath who knows where you live”

John F. Woods



We use the Agile Toolkit to create 
feedback loops

How is Quality achieved? 

Customer

Engineer

Product



Perceived Integrity

Conceptual Integrity

Requirements Programming

User
Experience

Customer

How - The Quality Wheel

• The effectiveness of the 
interaction between these 
constituents is key to the 
successful outcome of a 
Quality Solution

Product

Engineer



Perceived Integrity

Conceptual Integrity

Customer

How - The Quality Wheel

How Agile Helps

Goal: A Quality User Experience

Build the Right Thing - BDD

Build the Thing Right - TDD
Product

Engineer

Quality
UX

Test
Driven
Devt.

Behaviour
Driven
Devt.



Automated
Acceptance

Test

Acceptance
Criteria

Customer

BDD

How - TDD and BDD

Refactor

Make
test pass

Write
“failing”

test

TDD



Perceived Integrity

Conceptual Integrity

Customer

How - The Quality Wheel

• Goal: A Quality User 
Experience

• Build the Right Thing - BDD

• Build the Thing Right - TDD
Product

Engineer

Quality
UX

Test
Driven
Devt.

Behaviour
Driven
Devt.



Test Driven Development

• What Test Driven Development is

• Why we believe TDD is important

• How we develop code using TDD



What is TDD?

• Test Driven Development/Design is a design 
process.
– It’s a robust way of designing software 

components (units) interactively so that their 
behaviour is specified through unit tests

• TDD is not about finding existing bugs.
– It’s a process that assists you in not introducing 

bugs in the first place



Why we value TDD

• Check the code does what we expect it to 
(Functional & Reliable) 

• Safety net (Scalability & Maintainability)

– Allows the code to be extended and/or modified 
without breaking existing functionality

– Allows team ownership

Scalability Maintainability

Habitability



Why we value TDD

• Tests document the code (Habitability)

– Inform other developers how the code works and 
how it can be used

• Better architecture (Scalability & 
Maintainability)

– Separates interface thinking
from implementation thinking

Scalability Maintainability

Habitability



Why we value TDD

• Encourages refactoring (Habitability)

Scalability Maintainability

Habitability



How – TDD Cycle

Run all the tests and 
see them all pass

Refactor 
to 

improve 
the code

Run all the tests and see them all pass

Make the 
smallest 

change to 
pass the 

test

Run all the tests 
and see the new 
one fail

Write a 
failing 
test



How - TDD a quick example

Write a function that returns true or false depending on 
whether its input integer is a leap year or not.

A leap year is defined as one that is divisible by 4, but is 
not otherwise divisible by 100 unless it is also divisible by 
400.

For example, 2001 is a typical common year and 1996 is a 
typical leap year, whereas 1900 is an atypical common 
year and 2000 is an atypical leap year.



How - Rules & Examples

Unit tests specify concrete examples of the rules for the 
expected behaviour

We create examples for each rule starting with the 
simplest possible example



How - Rules & Examples

Unit tests specify concrete examples of the rules for the 
expected behaviour

We create examples for each rule starting with the 
simplest possible example

A leap year is defined as:

• A year that is divisible by 4, but is not divisible by 100

or

• A year that is divisible by 400



Tests

Code

Result

Our first test

def test_A_typical_common_year_returns_false

assert_equal(false, is_a_leap_year(2001), '2001 is not a leap year')

end

def is_a_leap_year(year)

true

end

1) Failure: TestHiker#test_A_typical_common_year_returns_false [test_leap_years.rb:7]:

2001 is not a leap year.

Expected: false

Actual: true

1 runs, 1 assertions, 1 failures, 0 errors, 0 skips

Red
Green

Refactor



Tests

Code

Result

Making the smallest/simplest
change to pass the first test

def test_A_typical_common_year_returns_false

assert_equal(false, is_a_leap_year(2001), '2001 is not a leap year')

end

def is_a_leap_year(year)

false

end

1 runs, 1 assertions, 0 failures, 0 errors, 0 skips

Red

Green
Refactor



Tests

Code

Result

Add second test for
the first rule

def test_A_typical_common_year_returns_false

assert_equal(false, is_a_leap_year(2001), '2001 is not a leap year')

end

def test_A_typical_leap_year_returns_true

assert_equal(true, is_a_leap_year(1996), '1996 is a leap year')

end

def is_a_leap_year(year)

false

end

1) Failure: TestHiker#test_A_typical_leap_year_returns_true [test_leap_years.rb:11]:

1996 is a leap year.

Expected: true

Actual: false

2 runs, 2 assertions, 1 failures, 0 errors, 0 skips 

Red
Green

Refactor



Tests

Code

Result

Making the smallest/simplest
change to pass both tests

def test_A_typical_common_year_returns_false

assert_equal(false, is_a_leap_year(2001), '2001 is not a leap year')

end

def test_A_typical_leap_year_returns_true

assert_equal(true, is_a_leap_year(1996), '1996 is a leap year')

end

def is_a_leap_year(year)

year % 4 == 0

end

2 runs, 2 assertions, 0 failures, 0 errors, 0 skips

Red

Green
Refactor



Leap Year Rules

A leap year is defined as:

• A year that is divisible by 4, but is not divisible by 100

or

• A year that is divisible by 400



Tests

Code

Result

Add third test for
the first rule

...

def test_A_typical_leap_year_returns_true

assert_equal(true, is_a_leap_year(1996), '1996 is a leap year')

end

def test_An_atypical_common_year_returns_false

assert_equal(false, is_a_leap_year(1900), '1900 is not a leap year')

end

def is_a_leap_year(year)

year % 4 == 0

end

1) Failure:TestHiker#test_An_atypical_common_year_returns_false [test_leap_years.rb:15]:

1900 is not a leap year.

Expected: false

Actual: true

3 runs, 3 assertions, 1 failures, 0 errors, 0 skips 

Red
Green

Refactor



Tests

Code

Result

Making the smallest/simplest
change to pass all three tests

...

def test_A_typical_leap_year_returns_true

assert_equal(true, is_a_leap_year(1996), '1996 is a leap year')

end

def test_An_atypical_common_year_returns_false

assert_equal(false, is_a_leap_year(1900), '1900 is not a leap year')

end

def is_a_leap_year(year)

year % 4 == 0 and not year % 100 == 0

end

3 runs, 3 assertions, 0 failures, 0 errors, 0 skips

Red

Green
Refactor



Tests

Code

Result

Refactor to make the
code more readable

...

def test_A_typical_leap_year_returns_true

assert_equal(true, is_a_leap_year(1996), '1996 is a leap year')

end

def test_An_atypical_common_year_returns_false

assert_equal(false, is_a_leap_year(1900), '1900 is not a leap year')

end

def is_a_leap_year(year)

(year % 4 == 0) and not(year % 100 == 0)

end

3 runs, 3 assertions, 0 failures, 0 errors, 0 skips

Red
Green

Refactor



Leap Year Rules

A leap year is defined as:

• A year that is divisible by 4, but is not divisible by 100

or

• A year that is divisible by 400



How – TDD Cycle

Run all the tests and 
see them all pass

Refactor 
to 

improve 
the code

Run all the tests and see them all pass

Make the 
smallest 

change to 
pass the 

test

Run all the tests 
and see the new 
one fail

Write a 
failing 
test



Common problems with TDD

• Easy to pick up, difficult to master

– Dependencies make testing more complicated

– Creating tests that document code is difficult to 
begin with

• Initial development can take longer, but the 
overall development time will be reduced



Test Driven Development

Run all the tests and 
see them all pass

Refactor 
to 

improve 
the code

Run all the tests and see them all pass

Make the 
smallest 

change to 
pass the 

test

Run all the tests 
and see the new 
one fail

Write a 
failing 
test

Scalability Maintainability

Habitability

How

WhyWhat



Bringing it all together

What

How

Why


